resource_tracker
resource_tracker
#
Resource Tracker package for monitoring resource usage, detecting cloud environments, and more.
Modules:
Name | Description |
---|---|
cloud_info |
Detect cloud environment (provider, region, instance type) via VM metadata services. |
helpers |
General helpers. |
nvidia |
Helpers to monitor NVIDIA GPUs. |
server_info |
Detect server hardware (CPU count, memory amount, disk space, GPU count and VRAM amount) via |
tiny_data_frame |
A very inefficient data-frame implementation for manipulating resource usage data. |
tracker |
Track resource usage of a process and/or the system. |
tracker_procfs |
Helpers to track resource usage via |
tracker_psutil |
Helpers to track resource usage via |
Classes:
Name | Description |
---|---|
TinyDataFrame |
A very inefficient data-frame implementation with a few features. |
PidTracker |
Track resource usage of a process and optionally its children. |
ResourceTracker |
Track resource usage of processes and the system in a non-blocking way. |
SystemTracker |
Track system-wide resource usage. |
Functions:
Name | Description |
---|---|
get_cloud_info |
Detect cloud environment and return standardized information on provider, region, and instance type. |
get_server_info |
Collects important information about the Linux server. |
get_cloud_info
cached
#
Detect cloud environment and return standardized information on provider, region, and instance type.
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing standardized cloud information:
|
Source code in resource_tracker/cloud_info.py
get_server_info
#
Collects important information about the Linux server.
Returns:
Type | Description |
---|---|
dict
|
A dictionary containing server information:
|
Source code in resource_tracker/server_info.py
TinyDataFrame
#
A very inefficient data-frame implementation with a few features.
Supported features:
- reading CSV files from a remote URL
- reading CSV files from a local file
- converting a dictionary of lists/arrays to a data-frame
- converting a list of dictionaries to a data-frame
- slicing rows
- slicing columns
- slicing rows and columns
- printing a summary of the data-frame
- printing the data-frame as a human-readable (grid) table
- renaming columns
- writing to a CSV file
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
Optional[Union[Dict[str, List[float]], List[Dict[str, float]]]]
|
Dictionary of lists/arrays or list of dictionaries. |
None
|
csv_file_path
|
Optional[str]
|
Path to a properly quoted CSV file. |
None
|
Example:
>>> df = TinyDataFrame(csv_file_path="https://raw.githubusercontent.com/plotly/datasets/refs/heads/master/mtcars.csv")
>>> df
TinyDataFrame with 32 rows and 12 columns. First row as a dict: {'manufacturer': 'Mazda RX4', 'mpg': 21.0, 'cyl': 6.0, 'disp': 160.0, 'hp': 110.0, 'drat': 3.9, 'wt': 2.62, 'qsec': 16.46, 'vs': 0.0, 'am': 1.0, 'gear': 4.0, 'carb': 4.0}
>>> df[2:5][['manufacturer', 'hp']]
TinyDataFrame with 3 rows and 2 columns. First row as a dict: {'manufacturer': 'Datsun 710', 'hp': 93.0}
>>> print(df[2:5][['manufacturer', 'hp']]) # doctest: +NORMALIZE_WHITESPACE
TinyDataFrame with 3 rows and 2 columns:
manufacturer | hp
------------------+------
Datsun 710 | 93.0
Hornet 4 Drive | 110.0
Hornet Sportabout | 175.0
>>> print(df[2:5][['manufacturer', 'hp']].to_csv()) # doctest: +NORMALIZE_WHITESPACE
"manufacturer","hp"
"Datsun 710",93.0
"Hornet 4 Drive",110.0
"Hornet Sportabout",175.0
Methods:
Name | Description |
---|---|
__init__ |
Initialize with either: |
__len__ |
Return the number of rows in the data-frame |
__getitem__ |
Get a single column or multiple columns or a row or a slice of rows. Can be chained. |
__setitem__ |
Set a column with the given key to the provided values. |
head |
Return first n rows as a new TinyDataFrame. |
tail |
Return last n rows as a new TinyDataFrame. |
__repr__ |
Return a string representation of the data-frame. |
__str__ |
Print the first 10 rows of the data-frame in a human-readable table. |
to_csv |
Write the data-frame to a CSV file or return as string if no path is provided. |
rename |
Rename one or multiple columns. |
Source code in resource_tracker/tiny_data_frame.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
|
__init__
#
Initialize with either:
- Dictionary of lists/arrays
- List of dictionaries
- CSV file path
Source code in resource_tracker/tiny_data_frame.py
__len__
#
__getitem__
#
Get a single column or multiple columns or a row or a slice of rows. Can be chained.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
Union[str, List[str], int, slice]
|
A single column name, a list of column names, a row index, or a slice of row indexes. |
required |
Returns:
Type | Description |
---|---|
Union[List[float], Dict[str, float], TinyDataFrame]
|
A single column as a list, a list of columns as a new TinyDataFrame, a row as a dictionary, or a slice of rows as a new TinyDataFrame. |
Source code in resource_tracker/tiny_data_frame.py
__setitem__
#
Set a column with the given key to the provided values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key
|
str
|
Column name (string) |
required |
value
|
List[float]
|
List of values for the column |
required |
Raises:
Type | Description |
---|---|
TypeError
|
If key is not a string |
ValueError
|
If the length of values doesn't match the dataframe length |
Source code in resource_tracker/tiny_data_frame.py
head
#
tail
#
__repr__
#
Return a string representation of the data-frame.
__str__
#
Print the first 10 rows of the data-frame in a human-readable table.
Source code in resource_tracker/tiny_data_frame.py
to_csv
#
Write the data-frame to a CSV file or return as string if no path is provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
csv_file_path
|
Optional[str]
|
Path to write CSV file. If None, returns CSV as string. |
None
|
quote_strings
|
bool
|
Whether to quote strings. |
True
|
Source code in resource_tracker/tiny_data_frame.py
rename
#
Rename one or multiple columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
columns
|
dict
|
Dictionary mapping old column names to new column names. |
required |
Returns:
Type | Description |
---|---|
TinyDataFrame
|
Self for method chaining. |
Raises:
Type | Description |
---|---|
KeyError
|
If any old column name doesn't exist in the dataframe. |
Source code in resource_tracker/tiny_data_frame.py
PidTracker
#
Track resource usage of a process and optionally its children.
This class monitors system resources like CPU times and usage, memory usage, GPU and VRAM utilization, I/O operations for a given process ID and optionally its child processes.
Data is collected every interval
seconds and written to the stdout or
output_file
(if provided) as CSV. Currently, the following columns are
tracked:
- timestamp (float): The current timestamp.
- pid (int): The monitored process ID.
- children (int | None): The current number of child processes.
- utime (int): The total user+nice mode CPU time in seconds.
- stime (int): The total system mode CPU time in seconds.
- cpu_usage (float): The current CPU usage between 0 and number of CPUs.
- memory (int): The current memory usage in kB. Implementation depends on the operating system, and it is preferably PSS (Proportional Set Size) on Linux, USS (Unique Set Size) on macOS and Windows, and RSS (Resident Set Size) on Windows.
- read_bytes (int): The total number of bytes read from disk.
- write_bytes (int): The total number of bytes written to disk.
- gpu_usage (float): The current GPU utilization between 0 and GPU count.
- gpu_vram (float): The current GPU memory used in MiB.
- gpu_utilized (int): The number of GPUs with utilization > 0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pid
|
int
|
Process ID to track. Defaults to current process ID. |
getpid()
|
interval
|
float
|
Sampling interval in seconds. Defaults to 1. |
1
|
children
|
bool
|
Whether to track child processes. Defaults to True. |
True
|
autostart
|
bool
|
Whether to start tracking immediately. Defaults to True. |
True
|
output_file
|
str
|
File to write the output to. Defaults to None, print to stdout. |
None
|
Methods:
Name | Description |
---|---|
__call__ |
Dummy method to make this class callable. |
diff_stats |
Calculate stats since last call. |
start_tracking |
Start an infinite loop tracking resource usage of the process until it exits. |
Source code in resource_tracker/tracker.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
__call__
#
diff_stats
#
Calculate stats since last call.
Source code in resource_tracker/tracker.py
start_tracking
#
Start an infinite loop tracking resource usage of the process until it exits.
A CSV line is written every interval
seconds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_file
|
Optional[str]
|
File to write the output to. Defaults to None, printing to stdout. |
None
|
print_header
|
bool
|
Whether to print the header of the CSV. Defaults to True. |
True
|
Source code in resource_tracker/tracker.py
ResourceTracker
#
Track resource usage of processes and the system in a non-blocking way.
Start a resource_tracker.PidTracker and/or a resource_tracker.SystemTracker in the background as spawned
or forked process(es), and make the collected data available easily in the
main process via the pid_tracker
and system_tracker
properties.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pid
|
int
|
Process ID to track. Defaults to current process ID. |
getpid()
|
children
|
bool
|
Whether to track child processes. Defaults to True. |
True
|
interval
|
float
|
Sampling interval in seconds. Defaults to 1. |
1
|
method
|
Optional[str]
|
Multiprocessing method. Defaults to None, which tries to fork on Linux and macOS, and spawn on Windows. |
None
|
autostart
|
bool
|
Whether to start tracking immediately. Defaults to True. |
True
|
track_processes
|
bool
|
Whether to track resource usage at the process level. Defaults to True. |
True
|
track_system
|
bool
|
Whether to track system-wide resource usage. Defaults to True. |
True
|
Methods:
Name | Description |
---|---|
start |
Start the selected resource trackers in the background as subprocess(es). |
stop |
Stop the previously started resource trackers' background processes. |
Attributes:
Name | Type | Description |
---|---|---|
pid_tracker |
Union[TinyDataFrame, List]
|
Collected data from the resource_tracker.PidTracker. |
system_tracker |
Union[TinyDataFrame, List]
|
Collected data from the resource_tracker.SystemTracker. |
Source code in resource_tracker/tracker.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
start
#
Start the selected resource trackers in the background as subprocess(es).
Source code in resource_tracker/tracker.py
stop
#
Stop the previously started resource trackers' background processes.
Source code in resource_tracker/tracker.py
pid_tracker
property
#
Collected data from the resource_tracker.PidTracker.
Returns:
Type | Description |
---|---|
Union[TinyDataFrame, List]
|
A resource_tracker.TinyDataFrame object containing the collected data or an empty list if the resource_tracker.PidTracker is not running. |
system_tracker
property
#
Collected data from the resource_tracker.SystemTracker.
Returns:
Type | Description |
---|---|
Union[TinyDataFrame, List]
|
A resource_tracker.TinyDataFrame object containing the collected data or an empty list if the resource_tracker.SystemTracker is not running. |
SystemTracker
#
Track system-wide resource usage.
This class monitors system resources like CPU times and usage, memory usage, GPU and VRAM utilization, disk I/O, and network traffic for the entire system.
Data is collected every interval
seconds and written to the stdout or
output_file
(if provided) as CSV. Currently, the following columns are
tracked:
- timestamp (float): The current timestamp.
- processes (int): The number of running processes.
- utime (int): The total user+nice mode CPU time in seconds.
- stime (int): The total system mode CPU time in seconds.
- cpu_usage (float): The current CPU usage between 0 and number of CPUs.
- memory_free (int): The amount of free memory in kB.
- memory_used (int): The amount of used memory in kB.
- memory_buffers (int): The amount of memory used for buffers in kB.
- memory_cached (int): The amount of memory used for caching in kB.
- memory_active (int): The amount of memory used for active pages in kB.
- memory_inactive (int): The amount of memory used for inactive pages in kB.
- disk_read_bytes (int): The total number of bytes read from disk.
- disk_write_bytes (int): The total number of bytes written to disk.
- disk_space_total_gb (float): The total disk space in GB.
- disk_space_used_gb (float): The used disk space in GB.
- disk_space_free_gb (float): The free disk space in GB.
- net_recv_bytes (int): The total number of bytes received over network.
- net_sent_bytes (int): The total number of bytes sent over network.
- gpu_usage (float): The current GPU utilization between 0 and GPU count.
- gpu_vram (float): The current GPU memory used in MiB.
- gpu_utilized (int): The number of GPUs with utilization > 0.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
interval
|
float
|
Sampling interval in seconds. Defaults to 1. |
1
|
autostart
|
bool
|
Whether to start tracking immediately. Defaults to True. |
True
|
output_file
|
str
|
File to write the output to. Defaults to None, print to stdout. |
None
|
Methods:
Name | Description |
---|---|
__call__ |
Dummy method to make this class callable. |
diff_stats |
Calculate stats since last call. |
start_tracking |
Start an infinite loop tracking system resource usage. |
Source code in resource_tracker/tracker.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
__call__
#
diff_stats
#
Calculate stats since last call.
Source code in resource_tracker/tracker.py
start_tracking
#
Start an infinite loop tracking system resource usage.
A CSV line is written every interval
seconds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_file
|
Optional[str]
|
File to write the output to. Defaults to None, printing to stdout. |
None
|
print_header
|
bool
|
Whether to print the header of the CSV. Defaults to True. |
True
|